Technical Report TR-65-23 September 1965

TREETRAN - A FORTRAN IV Subroutine Package

for Manipulation of Rooted Trees

by

John L. Pfaltz

This work was support&d in part by NASA grant
NsG - 398 to the University of Maryland

e —— .

r TABLE OF CONTENTS

Introduction
I. Background

II. Rooted Trees

III. FORTRAN IV Implementation

IV. Use of TREETRAN Subroutines

V. Graphic Representation of Trees

VI. Input and Output
VII. Example of a Problem Using Tree Structured Data

VIII. Programming Limitations and Considerations

b Appendix A - Summary of TREETRAN subroutines
and functions
Appendix B - Technical description of TREETRAN

as a SLIP list structure
Appendix C - Source listings of TREETRAN routines

Appendix D - Source listings of SLIP routines
used by TREETRAN

Introduction

This report is designed to serve as a manual by which a
user with only a working knowledge of FORTRAN may, by a system
of subroutines, extend FORTRAN IV to manipulate data which is
structured as rooted trees.

Intuitively, rooted trees may be considered as a formalization
of the situation where the nature of an event (or entity, or
piece of data) is dependent upon a single preceding event in
space or time. Consequently rooted trees can serve as valuable
models in many different fields.

The chain of command structure is a rooted tree that naturally
occurs in management, as are various operational decision trees.
In the theory of games the choice of alternative moves is dependent
upon the preceding move of the opponent, and similar tree structures
appear in economic theory. Rooted trees can serve as a model
for asexual reproduction, and, under certain conditions, animal
migration. The syntax of all natural language is basically
tree structured. Consequently trees have proved useful in
language translation, both to other natural languages as well
as to artifical computer languages. As one example of such
possible TREETRAN applications, a program for the generation
of syntactically correct sentences will be given later in
this report.

The list of rooted-tree applications above is meant to
be suggestive, not exhaustive. It is felt that many problems
in economics, management, decision theory, language, and
statistics, which could profitably be modeled with tree structures
are ignored for want of programmers who are conversant with
the traditional list structured languages such as LISP, IPL-V,
SLIP etc.

It is hoped that this package of rooted tree routines will
help bridge this gap by permitting researchers in diverse fields
to manipulate tree structures in FORTRAN, a widely known and
easily learned compiler language. 1In addition as we acquire
a larger body of experience with applications with tree-structured
data, the true value of this tool may be more accurately assessed.

The work in this report was supported in part by the
National Aeronautics and Space Administration Grant NsG-398
to the University of Maryland. In addition, the author
gratefully acknowledges the contribution of Dr. Joseph
Weizenbaum who developed the SLIP list processing language
in the context of FORTRAN, and the assistance of Mr. Robert

Lieberman who developed a working SLIP package from the ACM
listings.

TREETRAN - A FORTRAN IV Subroutine Package for
Manipulation of Rooted Trees

I. BACKGROUND:

Very often the pieces of data to be used in solving a
problem are not independent, but rather stand in some sort
of relation to one another. A familiar example from mathematics
is the matrix, where one seldom considers the individual elements
independently, but rather in their "rectangular" relationship
to the other elements.

Graphs and trees give examples of more general collections
of structured data. Consider the data to be stored at the
vertices of the graph and the edges to represent structure
relationships between the data. With this view a matrix is
just a very special data structure; one where the graph
representing the relational structure is "rectangular”.

It is clear that the power of matrix theory lies in
the ability to consider and manipulate the matrix as an
entity in its own right, and FORTRAN incorporates this
ability. Matrix arrays are named. From then on the matrix
may be read in or out by name only, and its name alone is
sufficient to provide the entire array as argument to manipulative
subroutines.

This subroutine package seeks to extend this type of
labeling and manipulative ability to a different class of
structured data -- specifically a collection of data whose
interrelationships can be represented by a rooted tree. While
it would be desirable to develop routines to handle still more
general data structures; one encounters tree structures sufficiently
often to make even this extension worthwhile.

II. ROOTED TREES:

Consider a graph with a directed edge joining the node
a, to the node a_. Wewill call al a precedent of a, and call
a, an antecedent”of a, -

By a rooted tree is meant a directed graph without circuits
such that every node has at most one precedent. Graphically

The root of the tree is the one node without a precedent
(node a in the figure). One may also consider subtrees and
their roots (perhaps principle node would be a better terminology).
For example, node e can be considered the root of the subtree
consisting of itself, j, k, n, and o.

A twig is a node without antecedents. Thus, i, j, n,
o, £, 1, p, and h are twigs.

The depth of a node below a specified node is the number
of edges between them. Nodes d, e, £, g, and h are all of
depth 2 below the root a.

III. FORTRAN IV IMPLEMENTATION:

In FORTRAN a piece of data is represented by a sym-
bol, say "X". The symbol "X" represents the data itself
and may be used exactly as if it was a number or set of
alphabetic characters. The symbol is defined by an arithmetic,
input, or DATA statement.

In the rooted tree package we introduce symbols that do
not represent data, but represent a node of the tree where
data is stored. Such a symbol (for instance "A") we say
"names" a node. One must refer to the data associated with
node A indirectly via a DATA function. Thus,

X = DATA (A,FLAG)
makes X equal to the data stored at A.

A name symbol can be defined when a node is created. for

-3~
For example,

A = CREATE (1, ARGl)
creates a node name "A" with one associated piece of data
ARGl. Every node is a given machine address name internally
by the system when it is created. However, the programmer
may also represent it with a symbol in case he wishes to
refer to it by name later in his program.

The arithmetic statement Y = X makes the symbol Y
represent the same value as X. B = A makes the symbol B
name the same node as A. For this reason we may call B
(and/ or A) an alias for the node. In order to avoid conflict
with the FORTRAN floating fixed point convention, we have
adopted the policy of denoting all node names and aliases
by floating point variables.

Since every tree (or subtree) has only one root there
is no ambiguity if we let the name of the root node also be
the name of the entire tree for which this is the root. 1In
all cases the context will make it clear whether the symbol
refers only to the node itself or to the entire tree for which
this node is the root.

Having symbolically named tree structures we may now
treat them as specific entities. In particular, we may attach
one tree to another; delete subtrees; compare trees; output
them; etc. These manipulations should become clear as
we discuss the actual TREETRAN subroutines.

IV. USE OF TREETRAN SUBROUTINES

Initialization:

Before executing any tree subroutines, space for the
tree structures must be reserved by the two statements

DIMENSION SPACE (n)

CALL INITAS (SPACE, n)
Where n is approximately 6 times the number of nodes in use
at any one time. Note that when a tree structure is no longer
needed its memory locations can be returned to a common pool
for reassignment in succeeding tree structures.

Node Creation and Data:

Any number of words* of any type (fixed, floating, or

-4-

alphabetic) may be stored at a node. The function CREATE (n,
ARGl, ARG2) creates, names and stores up to 2 words of data

at a node simultaneously. n = 0, 1 or 2 denotes the number

of data words to be stored at the node. ARGl and ARG2 are the
words of data to be stored (they need not be specified unless
indicated by n). The function value is the name of the node.

For example, A = CREATE (1, 107.3) creates a node with
name (or alias) A and stores the floating point number 107.3
there.

If more data is to be stored at a node the subroutine
ADD (A, ARG) will add the datum ARG to any data already stored
at node A.

Note that creating a node does not imbed it in a tree
structure (except the trivial one consisting of only the node
itself).

Three functions retrieve data that is stored at a given
node DATA (A, FLAG) and IDATA (A,FLAG) both retrieve a single
piece of data stored at a node A and deliver it as a function
value. If more than one piece of data is associated with A
these functions will return the first word that was stored
there. If no data is associated with that node a very large
number is returned and FLAG is set to TRUE. There are two
functions solely to eliminate the difficulties of fixed
floating point name conventions in FORTRAN.

With these two functions one can use data associated
at a node in the conventional way in FORTRAN.
For example, the statements
IF (IDATA (C2, FLAG) . EQ. 7) GO TO n
and
Y = SIN (DATA (PLACE,FLAG)/2.0)
check whether the fixed point number stored at the node named
C2 is equal to 7 and calculate the sine of one half the floating
point number stored at the node called PLACE respectively.

* However, it is usually quite uneconomical to store large arrays
in a tree structure.

<

It should be clear that
X = DATA (CREATE (1,Y),FLAG)
merely makes X equal to Y; and that
C = CREATE (2,DATA (A,FLAG) ,DATA (B,FLAG))
stores the data associated with nodes A and B at a new node
C as well.

If several words of data are stored at node A the subroutine
DLIST (A,N,ARRAY) puts the n words of data stored at A into
the vector ARRAY (which must have been dimensioned by the
calling program). The order of the words of data in ARRAY
will be the order they were stored at A.

So far only data consisting of a few words of numeric
or alphabetic data has been considered for storage at individual
nodes. However the data we wish to associate with a given
node might itself be tree structured. To accomplish this
we merely store the name of the data tree as the datum at the
node. In this manner we can quite easily build "trees of trees".

One question arises when retrieving data from nodes. Is
the word a piece of datum itself or is it just the name of
a still lower level data tree? Most programmers will probably
keep track within their program of the nature of the data they
expect to retrieve at any step. In cases of doubt, however,
a simple check is provided by the function NAMTST (DATUM).
This function returns zero if the datum is the name of a
subtree, non-zero otherwise.

Several further considerations involved in creating
"trees of trees" will be considered later in the section entitled
"Restrictions and Programming Considerations."

Tree Construction:

The function ATTACH (B, A) makes node B an antecedent
of node A. By using this function one can build trees link-
ing nodes to specified nodes. However because the name of a
node is also the name of the tree for which that node is
root, the ATTACH function can also attach entire tree structures
to other trees.

i T -6-

r For example, if we have constructed two trees, TREEl and
TREE2 as in the following diagram,

TREEL TREEZ2

Then the statement CALL ATTACH (TREEl, TREE2) creates the
single tree shown in figure 2.

TREE2

(Note that this structure is isomorphic to the subtree with
root b in figure 1)

ATTACH can be called as either a subroutine or a function.
When called as a function it delivers as its function value
the name of the precedent node. This provides a nesting capability.
If the program tries to attach a node that is already in a
tree structure (i.e., has a precedent) a warning diagnostic
is printed, the node (and corresponding subtree) is detached
from its current structure and attached to the new structure.

As an example the reader may verify that the coding

DIMENSION SPACE (1000)

CALL INITAS (SPACE, 1000)

TREE = CREATE (1, 1)

X = TREE

DO 107 I = 2, 7

IF (MODF (I, 2) .EQ. 0) GO TO 106
| X = ATTACH (CREATE 1, I), X)

GO TO 107

-7~

106 CALL ATTACH (CREATE (1, I), TREE)
107 CONTINUE

generates the following tree where the numbers represent data
at the nodes rather than their names.

1

fig. 3
Tree Output:

A single print routine PRTREE (A,I) prints tree structures
and their contents in an easily readable format. PRTREE
represents the tree structure by varying the position of the
node across the page corresponding to its depth below the root
A. The second parameter controls the format, under which the
contents of each node is printed, as follows:

I Integer (I8)
Alphabetic (A6)
Floating Point (Ell.4)
Octal (012)

I
B W

If PRTREE encounters the name of a tree stored as data it assigns
and prints a label for the data tree. After printing the
originally requested tree, it proceeds to print each of the

data trees, together with the assigned label for identification.

Figure 4 is a graphic representation of a "tree of trees"”
where each node contains a single alphabetic letter as data.
In addition the nodes with "c", "D", "M" and "W" also contain
data which is itself tree structured. This relationship is
indicated by the dashed lines. Figure 5 is the same tree
structure as printed by PRTREE (the lines are drawn by hand
to emphasize the tree structure).

Level O
|
|
| Y
|
| X
l W
| N 2
| Y |
Level 1 |
Data trees | '
| |
S |
T |
I
|
| P
Level 2 N
Data tree 0

Tree structure in which single letters of the alphabet,
together with 4 lower level tree structures, are stored
as data at the nodes.

figure 4

ROOT NCUE o« o o UF T2k STRUCTURE

A .
|~ NODE
b
r NOCE
"
(DATA TREE
LAREL 1)
NODE
1
NOCE
J
NICE
£
NOCE
C
(DATA TREE
LAREL 2)
NODE
F
NODE
L
NGDE
K
NODE
G
NOCE
i,.
“-\\\\\ NODE
b M
{DATA TREE
LABEL - 3)
NG TREE

ROOT NGCE - o o OF DATA TRet, LABEL 1
S

NOCF
T

NCCE
L
END TREE

figure 5

ROOT NCOE o o o COF DATA TREE, LAREL 2
N
NAOCF

[es}

NOCE
p
NODE
NOCE

END TREE

ruor NCCE « . o GF DATA TREL, LABEL 3
v
NOCE
W
(DATA TREE
LABEL 2)
NOCE
X
NOL E
| Y
END TREE

figure 5 (cont.)

Manipulative Routines:

Given an arbitrary tree structure the following routines
perform various operations on trees; in particular several find
the names of nodes with specified properties.

FUNCTION PREC (A) - gives as its function value the name of
the precedent of node A, If A is a root PREC is set
to zero.

SUBROUTINE TWIGS (A, N, ARRAY) - finds all twigs (nodes without
antecedants) in the subtree with root A. N denotes the
number of twigs found and the n names are put into ARRAY
(which must have been sufficiently dimensioned by the
calling program).

SUBROUTINE DEPTH (A, L, N, ARRAY) -~ finds all nodes of depth
I. below node A, returns the number found as N, and
returns their names in ARRAY. Note that N may be zero.

SUBROUTINE REMOVE (A, ARG) - removes the argument ARG from
the list of data stored at node A. If ARG is repeated
in the list every instance is deleted.

SUBROUT INE DETACH (A) - detaches node A from its precedent.
A is now the root node of a separate tree.

FUNCTION COPY (A) - makes a separate tree that is an exact
copy (both with respect to structure and data stored at
nodes) of the subtree with root A. It delivers as
functional value the name of the root of the new tree.

SUBROUTINE IRALST (A) - destroys the entire tree with root a,
and returns its cells to the pool of available cells.

The following examples show some of the uses of these
subrout ines:

1) Suppose we are at an arbitrary node X in a tree and
wish to find its root. We could use the following coding:

100 Y = PREC (X)

IF (y) 101, 102, 101
101 X=Y

GO TO 100
102 ROOT = X

or 2) Suppose we wish to find all'brothers" of a given node
X, (i. e., all nodes with the same precedent node). We could
use the following coding:

DIMENSION ARRAY (30)

CALL DEPTH (PREC (X), I, N, ARRAY)

Note that node X will itself be included in the list of brothers.

Tree Equality and Isomorphism:

In matrix theory two matrices are equal if their corresponding
elements are equal. Implicit in this definition is the assumption
that the two matrices were of the same dimension.

With rooted trees we have several concepts of "equality".
We may ask if the tree structures are completely identical,
regarding both structure and data stored at the individual
nodes; or we may merely ask if the structures are in some sense
equivalent, disregarding their data contents.

Even the concept equivalence between structures depends
on our intended usage. Consider the following three trees:

A B C

figure 6

-10-

Clearly A and B are equivalent, but is A equivalent to C? All
we have done is to interchange the sequence by which two of the
branches descend from the precedent node. In some problems this
difference might be significant, in others not. Therefore the
following terminology will be used: A is isomorphic to C, and
A is sequence isomorphic to B. More formally we have:

Definition: Two trees T, and T. are called isomorphic if there
exists a 1-1 mapping ¢: "T.—-T, Such that if node a is the precedent

of node b in Tl' then ¢ (a) "is the precedent of ¢(b) in T2,

Definition: Two trees T, and T, are called sequence isomorphic
if they are isomorphic, and if %he mapping ¢ also preserves the
sequence with which the nodes descend when represented as a
list structure.

Definition: Two trees T, and T. are called equal (sequence
equal) if they are isomorphic (sequence isomorphic) and the
data associated with corresponding nodes is identical.

Using this set of definitions we have the two following
functions for determining tree equivalence.

FUNCTION TISOM (A, B, ISW) - compares the two trees A and B
for isomorphism if ISW = 0 (or for sequence isomorphism
if ISW = 1). It returns zero as the function value if
they are isomorphic, non-zero if not.

FUNCTION TEQUAL (A, B, ISW) - compares the two trees A and B
for equality if ISW = 0, (or for sequence equality if
ISWw = 1). It returns zero as the function value if they
are equal, non-zero otherwise

V. GRAPHIC REPRESENTATION OF TREES

It is often useful to be able to graphically represent a
data tree with pencil and paper. The following conventions will
insure that the pencil sketch faithfully mirrors the internal
structure in the computer.

1) Let the root be at the top of the sketch, and its antecedents
on levels below.

~11-

2) Every time a new node (or tree) is attached to a given
node, draw this new structure to the right of all current
antecedents from the given node.

3) The TWIG and DEPTH routines will return from left to right.

4) All searches or descents in the structure will take the
left most path at any possible branch.

For example: given A F

D E I J
CALL ATTACH (A, F) would yield:

and the two statements
CALL DEPTH (F, 2, N, ARRAY)
CALL TWIGS (F, N, ARRAY)
will yield respectively
I, J, B, C
and
I, J, H, B, D, E.

VIi. INPUT AND OUTPUT

With the exception of the PRTREE routine, no provision
is made for the input or output of tree structures. If the
user wishes to read or write an individual tree, he will in
general want to format his data and its structure in a way
that is meaningful to him. He can then use a combination of
TREETRAN and standard FORTRAN input-output routines.

-12-

VII. EXAMPLE OF A PROBLEM USING TREE STRUCTURED DATA

The syntax of language may be regarded in a very natural
way as a tree structure, where a part of speech (say a prepositional
phrase) is composed of distinct parts (preposition, and object
of the prepositional phrase, together with adjective modifiers,
if any), and this part of speech is a part of a still higher
level structure. The root node of such a tree may be labeled
"the sentence", while the twigs consist of the specific words
that make up the sentence.

For example, the sentence "the hungry dog eagerly ate
the meat in the white dish", might be represented by the tree
in figure 7.

A program to generate syntactically correct sentences
‘was written in TREETRAN using this idea. Suppose we were to
ask the computer to write a declarative sentence. It would
begin with a tree called "sentence" which syntactically must
have branches to nodes called "subject part" and "verb part"”
Now the program examines the twigs of this tree and discovers
that the twig "subject part" is not a word; it must be further
defined. Here the program must pause. The syntax permits
various types of subjects. All the program can do is present
the various syntactically permissible structures and figuratively
ask "which one do you want?"

This is the semantic question "what meaning is this sentence
intended to convey". It might be answered by having the computer
communicate directly with the user and let him type in the
correct choice; or might be answered by calling a decision
routine which examines a set of data about which the sentence
purports to be a meaningful statement. In the current program
the computer merely generates a random number which then
answers the question, although often in a semantically
meaningless way.

Perhaps we decide that the "subject part" should consist
of a 'singular noun” preceded by a "definite article" and adjective
modifier"; this tree structure is then attached to a larger
one at the node "subject part”. On the next cycle the program
will again examine all twigs of the sentence tree; it will encounter

L 9aInbrt3

HSIa dLIHM dHd
IS8TITpou 91oT3a®E
unou aaT3Oalpe 93 TUTISP NI
uoTjTsodaad
30 uo@@ axd IYAW mwﬁ ALY wqm"woﬁ‘m
ISTJI TpPoW aToT3aI® I9TI Tpow
Teuot3Tsodaxd unou 93 TUTISpP qIsa qxsape 50d X¥ONNH THL
I8TITpou 9ToT3a®
qasa Jo 3oalqo oseayd qasa unou saT3joeslpe @3 TUTIOpP
JIRg qisa 3xed 3oalqgns
aousjussg
a B N Y P N

FLOW CHART FOR SENTENCE GENERATION
FROM SYNTAX TABLES

Begin
sentence
tree

|
13
Find all

twigs of
this tree

Y

For all twigs
DO

Is this tw1g No
a word? J 1

Attach to
this twig

a syntactically
permissible
Decision
function structure from
“ the replacement
table -- based

on the decision
function

No Have all twigs
been examined?
lYes

No [Were all twigs
\‘ words?

Print
sentence

figure 8

NN

O NN aNeNaNA) AN O NN

aNaNe!

aNaNS]

500

501

502

503

504

505

GENFRATE N SENTENCES

DO 1CGCH M=1eNSENT
SENT=COPY{PARTS(1+2))

FINND ALL TWIGS OF THE SENTENCE TREE
CALL TWIGS (SENTsNTWIGSsTWIG)

ARE ANY OF THE TWIGS STRUCTURAL PARTS OF THE SENCENCE (IEe NOT
WORDS OR PUNCTUATION)s IF SO ATTACH MORE STRUCTURE TO THESE
TWIGS

I1SW=0
DO 503 I=1sNTWIGS

CHECK WHETHER EACH TWIG IS IN THE REPLACEMENT TABLE
IF NOT IT IS A WORD.

PART=DATA(TWIG(1)sFLAG)

DO 501 J=1sNRT
IF(PART.EQeTABLE(Js1)) GO TO 502
CONTINUE

GO TO 5C3

YES IT ISe GENERATE A RANDOM INDEX oGEe 3 AND USE IT TO
PICK A TREF FROM THE REPLACEMENT TABLEY

ISw=1
CHOICE=TARLE(Js2)
INDEX=INT(RNG(1)*#CHOICE+340)

COPY THE CHOSEN TREE AND ATTACH TO THIS TWIGe

X=COPY(TABLE(Js INDEX))
CALL ATTACH (XsTWIG(I1))
CONTINUE

WERFE ALL TWIGS WORDS
IF(ISW) 50095044500

YESs WE ARE DONEs PRINT THE SENTENCE
DO 505 K=1¢4NTWIGS
TWIG(K)=DATA(TWIG(K) sFLAG)

CONTINUE

CALL PRTREE (SENTs#2) .

WRITE(655) (TWIGIK)sK=1sNTWIGS)

CALL TRALSTU(SENT)

figure 9

-13-

the twig "definite article" and again say "these are the syntactically
permissible definite articles in my vocabulary, which one do
you want?" And so on.

Figure 8 shows the flow chart for the syntactic sentence
generator, and figure 9 shows the coding of the generation
section. Sentences of varying complexity were generated and
printed, together with their corresponding syntax trees, every
.02 minutes. Some typical generated sentences include: "THE
LEAN CATS PUSHED THE WHITE MICE", THIS BIG AND HUNGRY DOG LIKED
THIS BLACK MAN." or "ONE WOMAN, THAT RARELY PUSHES THIS SLOW
MOUSE, LIKES THE BIG CATS".

VIII. PROGRAMMING LIMITATIONS AND CONSIDERATIONS

In the tree isomorphism and equality routines there
exists a limitation which is unlikely to be encountered,
specifically no single node of the tree may have more than 20
antecedents. In addition the tree equality routine only compares
the first piece of data (through DATA) at each node.

PRTREE will unambiguously display only trees of depth
13 or less.

In addition the programmer must be aware of some of the
implications in creating trees of trees. When a tree is stored
as data at the node of a higher level tree only its name is
stored as datum. Therefore:

1) No upward linkage is provided. Thus while it is
is possible to descend from higher levels, it is impossible
to ascend in the structure (unless the programmer himself
provides the upward link such as putting the name of the higher
level node in the data list of the root node of the lower tree,
or into auxillary storage).

2) The tree isomorphism and equality routines will check
on one level only; and in the case of equality corresponding
nodes must have exactly the same tree (including name of root)
stored as data.

3) Care must be taken in creating recursive loops; eg. having

RCCT NCDE . .
S

\ NCDE
DEC

. OF TREE STRUCTULRE

\‘\\\\\ NOCE
SSUB

\\\\\ NODE
SSUBP
\\\\\\ NOOE
ADJP SN
NODE
SDART.
\\\\\\ NODE
THIS
NODE
ADJMOD
NODE
"CONADJ
NODE
ADJ
T~ NGOE
BIG
NODE
CONJ
NCGDE
AND
NODE
ADJ
\\\\\\ NODE
HUNGRY
NODE
SNOUN
NODE
DOG
NODE
SVERBP
\\\\ NODE
STVP
NODE
STVBP
“___NODE
STVERB
\\\\ NODE
TVPST
\\\\\ NCDE
LIKED
NODE
oBJP
‘\\\\ NODE
ADJPSN
NODE
SDART
‘\\\\ NGDE
THIS
NODE
ADJMOD
NCDE
ADJ
TS~ NOOE
BLACK
NODE
SNOUN
NCDE
MAN
NODE
ENC TREE
THIS BIG AND hUNGRY DCG LIKED THIS BLACK MAN .

,

-14 -~
one of the descendant nodes of a tree point to itself (root
of the tree of which it is a part) as data. This is permissible

but dangerous.

4) A single tree structure may be provided as data at sev-
eral nodes of a higher level tree. This permits multiple access
to the root of a given tree, but requires care in the case of
erasure. A lower level data tree should not be erased unless
all references to it have been deleted.

APPENDIX A

TREETRAN Subroutines

Calling seguence

Function

ADD (A, DATUM)

DEPTH (A, L, N, ARRAY)

DETACH (A)

DLIST (A, N, ARRAY)

INITAS (SPACE, n)

IRALST (A)

PRTREE (A, I)

Adds the word of datum to any data
already stored at node A,

Delivers the names of all nodes in
the tree of depth L below the root
A, as the first n words of ARRAY,
N indicates total number of nodes
found at this depth (and may be
zero). ARRAY must be dimensioned
by the user.

Node A (and corresponding tree) is
detached from any structure it may
be in.

Delivers the entire list of data
stored at node A as the first n
words of ARRAY. N indicates total
words of data found at A. ARRAY
must be sufficiently dimensioned
in the calling program.

A SLIP routine which initializes
the list structure. SPACE is an
array which must have previously
been dimensioned SPACE (n).

Destroys the entire tree with root
A, and returns the cells to work-
ing memory.

Prints off line the tree with root
A. Variable spacing represents

the depth of each node below A.

The contents of each node is printed
under the following formats:

Calling sequence

Function

REMOVE (A, DATUM)

TWIGS (A, N, ARRAY)

Integer (I8)
Alphabetic (A6)
Floating point (E11.4)
Octal (012)

All data at the node is printed.

I
W N

Removes the specified word of datum
from the list of data at node A.

Searches the entire tree structure
determined by the root A and puts
the name of each twig (node without
descendents) into the first n words
of ARRAY. N denotes total number
of twigs found. ARRAY must be suf-
ficiently dimensioned by calling
program.

*9sSTMIBY3O T-
*99x13Qqns B SsawWRU WALYA 3T 0

To9913gns v JO duweru
9Yy3 ST wnijep 9Y3l ISYIOYM SHDIYD

(WNALVYQ) LSLWVYN

o dNdL 03

39S ST OYIJ pu®e ‘pouanial
ST snTea aaT3Tsod abiey
Axsa ® ‘punoj sT suou II
‘wnjep Jo paom S1buTts

° UOT3IUSAUOD
jutod BUuT3lIROTI-POXTI NWVALIOJL @Yl
©3e3T7ToRT AT9x18wWw VIVAI Pue VIvVd

S9TI3UD® OM] OSYL °3ISITI OY3} SUIN3}ax
1T ‘'po9I03sS @Ik klep JO SpIOm BRI
-A9Ss JI °Y 9pou 3B paiols skm eyl
wunjep Jo 909Td 97buls B SISATTSQ

(o¥1d'VY) V¥IvYaI
(ov1d’'y) vIvd

*9pou pajesaido 8yl Jo sweN

*9pou syl e (Zody ’'TI9dUV)
B3RP JO sSpaom (g X0 ‘T ‘p=)u
9yl S2I03S pue Spou B sd93EDID

(zo¥uy 'T9¥V ‘N) FLYI™UD

9913 Adoo
Y3l JO 300X 9yl JO suweN

‘elep pPaI03S puB BaAN3ONIIS
butpniout ‘y Spou 3001 YiTMm
9913 9y3z jJo Adod 30BX® UR S EW

(¥) XdoD

(g8 '°9°1)
2pou juspodaid JO SweN

‘g 03 payodejje

ST ¥ usyl pue ‘pajurtad sT OT3IST
-uobeTIp B ‘8SIN3ONIIS 9913 JUSIIAND
S3T WOoIJ payoe3lsp ST 3T ‘300X ®
jJou sT ¥ JI "9 9pou JO juspsadajue
U3TIm 9INn3onijs 8913 a9yl soyodeljvy

(9 ‘¥) HOVLLVY

anyea
uoT3ouny se SIASATTSA

uoT3INDaXY

suoT3IduUny NVILITYL FO °1qel

Tenbaun JT 0°1

‘BRlep TeDTIUSPT UTBJUOD OSTe Sapou
peaTted 3eY3l 3JUTRIJSUOD TRUOTITPpPE
YazTm 3Ing ‘saoqe se wstydaow

Tenbs IT 0 -OST I03J g pue y so3131 saxedwo) (MSI ‘9 'y) TYndalL
(S3STT se TeoT3UapT
2 3Jshw seaInjioniis
‘*®°T) °s9pou juspuULOSIP
Jo sousnbess saxssaad
osTe 3snw butddew ay3z ‘T = MSI
UOT3IRTSI 2DUSPUSDSIP
saa19sa1d jeyyl butddeu
*oTydaou Aue aq ued wsTtydIoWosT ‘Q = MSI
-OST 3j0uU aIe s9313 JT 0°T :9x9yMm wsTUdIOoWOST TeaANIONIIS
oTydaowosT sae s9a13 IT B JI0J d puk y so®a9x13 saxedwo) (MSI ‘d '¥) WOSIL

‘300X ® ST y JT 0i18Z
I0 !8pou juspsdaxd Jo sweN

B4
spou Jo |pou juspsdsaxd ayz sputd

(¥) DoFud

APPENDIX B

The tree structures of TREETRAN are internally repre-
sented as list structures. To process these list struc-
tures, the subroutine package uses the symmetric List Pro-
cessing (SLIP) language developed by Dr. J. Weizenbaum of
MIT. The definition of the SLIP language may be found
in his article in the Comm. of the ACM, September 1963.

A more expository description of SLIP is being written
as a CSC Technical Report.

Each node in a tree is stored as a list containing
pointers to each of the descendant nodes (sublists), words
of data associated with the node, and a pointer to the
precedent node. To facilitate some of the routines, the
data associated with a node is always found at the bottom
of its list.

The SLIP list structure corresponding to the tree in
figure 3 may be visualized as follows:

Word of memory sym-—
|] bolically represented
in FORTRAN by TREE
(an alias)

‘J\—————j 4 —1

In this diagram each box symbolizes a SLIP cell,
which inturn consists of two consecutive words of memory.
The string of cells comprising a single list need not
be consecutively stored (although this is suggested by
the diagram above), but are in general spread throughout
that portion of memory reserved for list structures by
INITAS. In a SLIP cell the first word contains the
linkage information stringing the cells of a single list
together; this information is used solely by the SLIP
routines and has been omitted in the diagram. The
second word of each cell contains various forms of in-
formation (pointers, data, etc.) and are manipulated
by the TREETRAN subroutine.

We need be concerned with only three types of SLIP
cells, each of which is uniquely identified in the SLIP
system. First, the header cell is the first cell in
any list. It defines the list and contains certain
bookkeeping information about the list. The TREETRAN
structure uses the left link of the 2nd word of the
header in a non-standard way, as the pointer to the
precedent node. The only restriction this imposes is
that one may not use the attribute lists of SLIP in
conjunction with the TREETRAN package.

The second type of SLIP call is a name cell which
"points" to (or names) a sublist. We use the cells in
the standard way to point to descendant nodes (sublists).
The third SLIP cell is a datum cell, which merely con-
tains any word of datum which the user puts there.

A word of caution is in order regarding the SLIP
convention of naming (or pointing to) 1lists. In SLIP
a cell that points to or names a list has a unique
format in which the machine address of the list being
pointed to (actually its header) is repeated in two
fields of the word. 1In addition,if the cell is a name
cell in a list it is given an identifying tag of 1
(versus 0 for a datum cell). However,when one constructs
a tree of trees and stores the name of a tree as datum
at a node, the system stores a regular name cell, but
without the identifying tag, as a datum cell.

Now the NAMTST routine determines whether a cell
names a sublist by checking only for the repeated address
construction.* Thus we have two ways of determining
whether a cell points to a sublist; by its identifying
tag and by NAMTST. SLIP subroutines use both of them.
Thus, while there is no confusion in the present package,
care must be taken that modification of the system by
the addition of more SLIP routines does not destroy the
distinction between pointers that function as name cells
(pointing to descendant nodes of a given tree) and
pointers that function as datum cells (pointing to lower
level tree structures being treated as data structures).

In the TREETRAN subroutines frequent reference is
made to the SLIP subroutines LRDROV, ADVSNR, and ADVLER.
These employ a different kind of SLIP list. Briefly
if a routine must descend into a list structure to
perform some function, it must keep track of where it
is in the structure and how it got there. One of the
easiest methods of keeping track of this information is
to create a second auxiliary list., SLIP provides such
a system and calls these auxiliary working lists, READER
lists. LRDROV creates these temporary working lists
and advance functions such as ADVSNR and ADVLER use them.
For a thorough description of READER lists and their
function the user is refered to Weizenbaum's article in
the Communications or the CSC Technical Report.

The following SLIP routines are included in the
TREETRAN package.

D DELETE
LNKL INITAS
LNKR IRALST
CONT LCNTR

* Tt also verifies that the word being pointed to is
really a header cell and the repeated address construction
is not just a freakish coincidence.

w.

MADOV

SETDIR
SETIND
STRDIR
STRIND
ADVLER
ADVLNR
ADVLWR
ADVLR

ADVSER
ADVSNR
ADVSWR
ADVSR

LIsT
LISTMT
LocT
LOFRDR
LPNTR
LRDROV
LVLRV]
MTLIST
NAMSTS
NUCELL
NXTLFT
NXTRGT
RCELL
REED

LISTINGS OF TREETRAN ROUTINES

Routines that create and structure trees:; store and retrieve
data stored at nodes:

a. CREATE
b. ATTACH
c. DETACH
d. DATA
e. DLIST
f. ADD

g. REMOVE
h. COPY

Output routines
a. PRTREE

Manipulative routines that deliver the names of nodes with
specific properties

a. DEPTH
b. TWIGS
C. PREC

Equality and isomorphism routines

a. TEQUAL
b. TISOM
c. TRACE
d. ORDER

e. PERM

SINFTC CREATX

NN

INTEGER FUNCTION CREATE (NyARG1sARG2)

THIS FUNCTION CREATES A NODE (ACTUALLY A LIST) WITH

N WORDS OF ASSOCIATED DATAs IEs ARG1 AND ARG2e N MAY EQUAL
Os1s OR 24 THERE NEED ONLY BE AS MANY DATA ARGUMENTS AS
INDTCATED BRY N

L=LIST(9)

IF {(NeEQeO) GO TO 1

CALL ADD (LsARG1)

IF (N+FQel) GO TO 1

CALL ADD (L»ARG2)

CREATE=L

RFTURN

END

SIRFTC ATTACX

N"ONND

1

~d

REAL FUNCTION ATTACH (AsB)

THIS SUBROUTINE ATTACHES NODE A (AND ANY SUCCEEDING BRAINCHES)
IN THE TREE FOLLOWING NODE B. IF A ALREADY HAS A PRECEEDING
NODEs A FLAG 1S PRINTEDs A IS DETACHED FROM ITS CURRENT
PRECEDANT AND B IS MADE ITS PRECEDANT

INTEGER A

LINCUP=LNKL{CONT(A+1))

IF(LINKUPLEQSO) GO TO 2

CALL DETACE (A)

FORMAT (12H BEFORE NODE»O13s1X9s23HWAS INSERTED AFTER MNODEsOQOl3s/4Xs
125HIT WAS DETACHED FROM NODE»0O13)

WRITF (6s1) AsBsLINKUP

LR=LRDROV(RB)

DATUM=ADVLER(LRsFLAG)

M=NXTLFT(ASLPNTR(LR YY)

CALL SETIND (=1sLNKL(B)s=1sA+1)

CALL RCELL (LR)

ATTACH=R

RETURN

END

SIRFTC DETACX
*© SUBROUTINE DETACH (A)
C THIS SUBROUTINE DETACHS NODE A (AND ANY SUCCEEDING BRANCHES)
C FROM THE TREE AND CREATES A NEW TREE WITH ROOT A,
INTFGER RsAsX
LINKUP=LNKL(CONT(A+1))

DOFS THIS NODE HAVE A PRECEDENT

NN

IF(LINKUP.EQ.O) GO TO 3

YESs FIND ITe THEN FIND THE CELL IN THE PRECEDENT LIST POINTING
TO NODE A

e NaXe!

CALL SETDIR (OsLINKUPLINKUPSLINKUP)
R=LRDROV{LINKUP)

1 FLAG=ADVLR(Rs1s1)
IF(FLAG)55295

2 TF(LNKR(CONT(LNKL(CONT(R))+1))eNEsLNKR(A)) GO TO 1

REMOVE NAME OF NODE A FROM PRECEDENT LISTs SET PRECEDENT POINTER
AT A TO ZERO

DO NN

X=LNKL (CONT(R})
LR=LNKR{CONT(X})
LL=LNKL({CONTI{X})
CALL SETIND (=1s=1sLRsLL)
CALL SETIND (I1lsLL9IlsLR)
CALL RCELL (X)
CALL SETIND (=1+0s=19sA+1)
CALL RCELL (R}
3 RFTURN
4 FORMAT (25H NO NAME POINTING TO NODEsO13s1X9s31HWAS FOUND IN ITS PR
1ECEDANT NODE)
104 FORMAT (1HO 910X s6HDETACH »8Xs THLNKR(A) 98X s 1HA9 12X s 6HLINKUP /21X
1 012s4X901294X+012)
105 FORMAT (12Xs11HPOINTING AT»014)
5 WRITE (6+4) A
STOP
END

$IRFTC NDLISTX

SUBRROUTINE DLIST (AsN»ARRAY)

THIS SUBROUTINE RETRIEVES ALL DATA STORED AT NODE A AND STORES
IT IN THE FIRST N WORDS OF ARRAY

aNaNe!

DIMENSION ARRAY (1)
N=0
LR=LRDROV(A)
100 X=ADVLER(LRsFLAG)
IF(FLAG) 10291019102
101 N=N+1
ARRAY (N) =X
GO TO 100
102 CALL RCELL (LR)
RETURN
FND

SIRMAP DATAX 20
FNTRY IDATA
ENTRY DATA

* THIS FUNCTION — DATA (A4FLAG) - RETIREVES A

* SINGLE PIECE OF DATA ASSOCIATFD WITH NODE

* Ase IT HAS TWO ENTRIES TO FACILITATE

* FIXED=-FLOATING PTe CONVENTIONS OF FORTRAN,

* IF ND VALUE 1S FOUND IT RETURNS A

* LARGE VALUE AND SETS FLAG TO TRUE.

DATA CLA =1 REMEMBER WHICH
STO SWTCH ENTRY WAS USED
TRA *e?

IDATA STZ SWTCH
SXA EXITos
CLA* 394 GET AND STORE A
STO A
CALL LRNDROV(A) MAKE A READER
STO R
CALL ADVLER(RsFLAG) GET FIRST ELEMENT
STO DATUM
CALL RCELL{R) RETURN READER TO LAVS
CLA FLAG
TNZ EMPTY
CLA FALSE SET FLAG TO FALSE
STO* bLyh
CLA DATUM RETURN WITH DATA
TRA EXIT IN ACCe

FMPTY CLA TRUE SET FLAG TO TRUE
STN* be b
CLA SWTCH NO DATA AT THIS
T7F FXD NODE
CLA LARGE
TRA EXIT

FXD CLA RIG

FXIT AXT ¥4
TRA 194

SWTCH PZF

R PZE

FLAG PZF

DATUM PZE

A PZF

LARGF DFC 9999999999,

RIG OCcT 77771777

FALSF PZE

TRUF oCT T77777777777

FND

SIBFTC ADDX

SUBROUTINE ADD (AsDATUM)
C THIS SUBROUTINE ADDS THE DATUM TO THE SET OF DATA ALREADY
C STORED AT NODE A
C

IL=NUCELL(2Z)

« LL=LNKL(CONT(AY)
CALL SETIND (=1s=1s1ILsLL)
CALL SETIND (=1slL9e=1yA)
CALL SETIND (OsLLsAsILY
CALL STRIND (DATUMsIL+1)
RETURN
END

SIRFTC RFMOVX
SURROUTINE REMOVE (AsDATUM)

C THIS SUBROUTINE REMOVES THE DATUM FROM THE LIST OF DATA STORED
C AT NODE Ase
C

LR=LRDROV(A)

100 X=ADVLER(LRFLAG)
IF(FLAG)102+1019102

101 IF(XeNESDATUM) GO TO 100
CALL DELETE (LPNTR(LR))
GO TO 170

102 CALL RCELL (LR)
RETURN
END

$IRFTC COPYX
FUNCTION COPY (A)

C THIS FUNCTION CREATES A TREE THAT IS AN EXACT COPY (BOTH
C STRUCTURALLY AND IN DATA AT NODES) AS THE TREE WITH ROOT A.
C IT RETURNS THE NAME OF THE ROOT OF THE COPY AS FUNCTION VALUE
C
DIMENSIOM EQUIVI(3042)
REAL LOFRDR
C
C COPY THE ROOT NODE
C

K=1
EQUIV(Ks2)=CREATE (0)
EQUIVIKs1)=A
LRTEMP=LRDROV(A)

10N X=ADVLER(LRTEMPsFLAG)
IF(FLAGY1C2+1019102

101 CALL ADD (EQUIVI(Ks2)9X)

GO To 170
102 CALL RCELL (LRTEMP)
c
C CREATE READER TO DESCEND TREE Ay AND START DESCEND
C

LR=LRDROV(A)
150 Y=ADVSNRILRSFLAG)

aNaKe)

N O NN

D OO

160

200
201

2N2

IF(FLAG)25091609250

WE HAVE ENCOUNTERED A NEW NODE o COPY IT AND LINK IT UP

K=K+1
ENUIVI(Ks2)=CREATE(O)
FQUIVIKsl)=Y
LRTEMP=LRDROVI(Y)
X=ADVLER(LRTEMPsFLAG)
IF(FLAG)20292014+202
CALL ADD (EQUIVI(Ks2)sX)
GO TO 200

CALL RCELL (LRTEMP)

WHAT NODE ARE AT IN THE ORIGINAL TREEe FIND EQUIVILENT IN

COPY TREE AND LINKUP.

SFARCH=LOFRDR(LR)

DO 205 I=1,sK
IF(SEARCHEQ.EQUIV(Is1)) GO TO 206
CONTINUE

GO TO 390

CALL ATTACH (EQUIVI(K92)9EQUIV(Is2}))
GO TO 150

ALL NOCES HAVE BEEN FOUNDs WE ARE BACK TO A

} CALL RCELL (LR)

COPY=FQUIV(1s2)
RETURN

ERROR ROUTINE

FORMAT (1HO933HPRECEDENT NODE NOT IN EQUIV TABLE)
WRITE (691)

STop

END

$IBFTC PRTREX

aYoNaNaNaNa

XA NARS]

NSNS

NN

wW N

50

100

101
102

103
104

105

SUBRROUTINE PRTREE (AsJ)

THIS SUBROUTINE PRINTS OUT ENTIRE SUBTREE THAT HAS A AS ITS ROOT.

J CONTROLS FORMAT AS FOLLOWS
J=1 INTEGER (18)
=2 ALPHARETIC (AS6)
=3 FLOATING PTe (Elle&)
=4 OCTAL (012)

DIMENSION FMT1(2)sFMT2(2) 9 FMT3(2) s FATL(2)9FMTS(3)9sFMTE(3)sVSP(13)
DIMENSION FMTT7(4)sFMT8(4)sDTREE(30)

CQUIVALENCE (DATUMy IDATUM)

DATA (FMT1(1)s1=1+2)/6H(03Xs +6HIB) /
DATA (FMT2(1)s1=192)/6H(03Xs 96HAG) /
DATA (FMT3(1)s1=192)/6H{03Xs »6HE11le4)/
DATA (FMT4(I)e1=192)/6H(03Xy 96HO012) /

DATA (FMT5(1)91=193)/6H(03Xs +6HEH

NO s 6HDE) /

DATA (FMT6(1)91=193)/6H(03Xy s6HTHNO Des6HATAY /

DATA (FMT8(I)s1=194)/6H(03Xs s6HOHLABE s6HL
DATA (FMTT(I)s1=194)/6H(03Xy +6HI0HI(DAI6HTA TREW6HE)

912996HIH)Y /

/

DATA (VSP(1)sI=195)/6HI03Xs 96H(13Xys »6H(23Xy s6H(33Xs s6H(43X)
DATA (VSP(I1)s1=6310)/6H(53Xe 26H(63Xs +s6H(T3Xs s6H(83Xy s6H(I3Xs
DATA (VSP(I)sI=11913)/6H(103Xss6H(113Xssb6H(123Xs/
FORMAT (34H1ROOT NODE o e o OF TREE STRUCTURE)

FORMAT (9H END TREE)

FORMAT (37HIROOT MNODE o o o« OF DATA TREEs LABEL 12)

MAKE READER FOR TREEs INITIALIZE,

WRITE (6s1)
LR=LRDROV(A)
NDPT=0

NPT=0

LFVEL=0

ISwW=0

ASSIGN 202 TO L
GO TO 300

WE HAVE PRINTED ALL THE DATA AT THIS NODE» ADVANCE

TO THE NEXT NODE

Y=ADVSNR(LRsFLAG)
IF(FLAGY1"351019103

ARE WE GOING UP OR DOWN THE TREEs

IF(LEVEL = LCNTR(LR))106+2005102
LEVEL=LEVEL=1

ASSIGN 101 TO L

GO TO 300

DONE WITH THIS NODE

IF(LEVEL - LCNTR(LR)Y)I106+105+104
LEVFL=LFVEL=1

ASSIGN 103 TO L

Gn TO 370

WRITE (6+2)

CALL RCELL (LR)Y

HAVE ALL DATA TREES BEEN PRINTED)

IF NOT PRINT NEXT

AND PRINT ROOT NODE

STRUCTURALLY

IN LIST

/

/

D ON

N NN

106

200

201

2031

2032
2033

2034
2035

2036
204

206
207
208

209
210

300

IF(NDPTGF«NDT) RETURN
NDPT=NDPT+1

WRITE (69+3) NDPT
LR=LRDROV(DTREE(NDPT))
GO T0 50

PRINT HEADING AND DATA AT THIS NODE

LEVEL=LEVEL+1
ASSIGN 201 TO L

GO TO 300
WRITE (6sFMTS)
I1SwW=0

IF(LISTMT(Y)eEQeO) GO TO 209
DATUM=ADVSWR(LRsFLAG)
IF(ID(CONT(LPNTR(LR)))eNEs1l) GO TO 203
DATUM=ADVLER(LRsFLAG)
IF(FLAG)208920C35208

ISwW=1

IS THIS DATUM A DATA TREE
IF{NAMTST(DATUM)) 2036420312036
YES IT 1Se. IS IT A DATA TREE ALREADY FOUNDsIF NOT PUT IN LIST

IF{DATUMGEQeA) GO TO 410
IFINDTSEQel) GO TO 2033
DO 2032 K=1¢NDT
IF(DATUMGEQ.DTREE(K))Y GO TO 2034
CONTINUE

IF (NDTeGE«30) GO TO 400
NDT=NDT+1
DTREE(NDT)Y=DATUM
LABNDT=NDT

GO TO 2038

LARDT =K

WRITE (6+sFMTT)

WRITE (6sFMT8) LABDT

GO TO 202

GO TO (2044+20592069207)9d
WRITE (6sFMT1) IDATUM

GO TO 202

WRITE (6+FMT2) DATUM

GO TO 202

WRITE (6sFMT3) DATUM

GO TO 202

WRITE (6+FMT4) DATUM

GO TO 2n2
IF(IS5W)2104209,4210

WRITE (6+sFMT6)

GO TO 100

SET UP VARIABLE SPACED FORMATS

IF(LEVELeGES13) GO TO 301
FMT1(1)=VSP(LEVEL+1)

~—

DON

301

400

401

410

411

FMT2(1)=VSP(LEVEL+1)
FMT3(1)=VSP(LEVEL+1)
FMT4(1)=VSP(LEVEL+1)
FMTS5(1)=VSP(LEVEL+1)
FMT6(1)=VSP(LEVEL+1)
FMT7(1)=VSP(LEVEL+1)
FMT8(1)=VSP({LEVEL+1)
GO TO Ls(1015120392019202)

FERROR ROUTINEs FOUND TOO MANY DATA TREES

PRINT 401,

LARDT=99

GO TO 2035

FORMAT (5X948HMORE THAN 30 DATA TREES FOUNDe LABEL 99 ASSIGNED)

RECURSIVE REFERENCE TO ROOT

PRIMT 411

LABNT=98

GO TO 2035

FORMAT (5Xs46HRECURSIVE REFERENCE TO ROOTe LABEL 98 ASSIGNED)
END

~——y

" SIRFTC DEPTHX

SUBROUTINE DEPTH (AsLsNNFsNAMES)

C THIS SUBROUTINE FINDS ALL NODES THAT ARE OF DEPTH L BELOW
C NODE A. NNF IS THE NUMBER OF NODES FOUND AT THIS DEPTH
C AND THE NAME OF EACH FOUND NODE IS STORED IN THE ARRAY
C NAMES WHICH MUST HAVE BEEN SUFFICIENTLY DIMENSIONED
C BY THE CALLING PROGRAM
REAL NAMES(1)
1 FORMAT (4X93H10194X901293X901293X9F340915)
2 FORMAT (4X93H10394X901293Xs01293X9F360915)
3 FORMAT (1H1s9HSTATEMENT s5X»4HNAME+10X 9 6HREADERWS5X 94HFLAG»6H NODES)
C
C CREATE READER AND CHECK L
C
LR=LRDROV(A)
NNODES=0
IF(LeFEQel) GO TO 200
C
C DESCEND TREE TO DEPTH Le=1
C
101 X=ADVSNR(LRsFLAG)
IF(FLAG)1104102,110
102 IF(LCNTR(LR)eLTeL~1) GO TO 101
GO TO 104
C
c WE ARE AT DEPTH L-1s ALL NAMES AT THIS NODE ARFE AT DEPTH L
C

103 X=ADVLNR(LRyFLAG)
IF(FLAG)10541044105
104 NNODES=NNODES+1
NAMES (NNODES) =X
GO TO 103

ASCEND ONE LEVEL AND CONTINUE SEARCHING

DO N

105 LD=LVLRVI1(LR)
X=ADVLWR(LRsFLAG)
IF(FLAGYI1INT+106+107

106 IF(NAMTST(X))101+1025101

107 TF(LCNTR(LR))1109110s105

ENTIRE SUBTREE HAS BEEN SEARCHED

NN

110 NNF=NNODES
CALL RCELLI(LR)
RETURN

IF L=1s ONLY A LINEAR SEARCH OF NODE A IS NECESSARY

N NN

200 X=ADVLNR(LRsFLAG)
IF(FLAG)110+2015110
201 NNODES=NNODES+1
NAMES (NNODES)=X
GO TO 200
END

~— >

]

SIBFTC TWIGSX
SUBROUTINE TWIGS (AsNsARRAY)

C THIS SUBROUTINE FINDS ALL TWIGS THAT CAN BE REACHED FROM VERTEX
C Ae N IS THE TOTAL NUMBER FOUNDs THE NAMES OF THE TWIGS ARE PUT
C INTO ARRAY (WHICH MUST BE SUFFICENTLY DIMENSIONED BY THE USER)

DIMENSION ARRAY(1)
CREATE READER AND BEGIN DESCENT

DO

LR=LRDROVI(A})
N=0
CAND=A
GO TO 101
100 CAND=ADVSNR(LRsFLAG)
IF(FLAG)10449101+104

C IS THE CANDIDATE A TWIGe
101 LRTFMP=LRDROV (CAND)
X=ADVLNR(LRTEMPsFLAG)
CALL RCELL(LRTEMP)
IF(FLAG)10251035102

YESs PUT ITS NAME INTO ARRAY

NN

102 N=N+1
ARRAY (N)=CAND
GO TO 100

MO» KEEP SEARCHING

OO0

103 GO TO 100

ALL NONE

AN

104 CALL RCELL (LR)
RFTURN
END

$IRFTC NPRECX
INTEGER FUNCTION PREC(A)

C THIS FUNCTION DELIVERS AS FUNCTIONAL VALUE THE NAME OF THE
C NONDE PRECEEDING NODE Ae. IF A IS THE ROOT OF THE TREE
C NPREC IS SET TO ZERO

INTEGER A

LINKUP=LNKL{(CONT(A+1))

IF(LINKUPLEQsCQ) GO TO 1

CALL SETDIR (OsLINKUPsLINKUPsLINKUP)
1 PRFC=LINKUP

RFETURN

END

$IRFTC TEQUAX

aNaNeXaNA!

100

FUNCTION TEQUAL (AsBsISW)
THIS FUNCTION COMPARES TREES A AND Be IT RETURNS FUNCTIONAL VALUE
ZERO IF THE NODES CONTAIN IDENTICAL DATA AND ARE STRUCTURALLY
THE SAME (IN THE FOLLOWING SENSE)
1SW=0 ISMORPHIC -~ THERE EXISTS SOME MATCHING BETWEEN NODES
ISW=1 SEQe ISOMORPHIC = THE TREES DECEND IN THE SAME SEQe
LOGICAL FLAG
I=0
J=1SW
CALL TRACE (AsBsIsJsFLAG)
IF(FLAG) GO TO 100
TEQUAL=1.0
RETURN
TEQUAL=0,0
RETURN
END

SIRFTC TISOMX

ANOHOONNO OO

100

FUNCTION TISOM (AsBsISW)
THIS FUNCTION STRUCTURALLY COMPARES THE TWO TREES A AND Be
IT RETURNS ZERO AS FUNCTIONAL VALUE IF THE TREES ARE ISMORPHIC
(IN THE FOLLOWING SENSE)
15W=0 ISOMORPHIC = THERE EXISTS SOME MAPPING OF A ONTO 8
ISwW=1 SEQes ISOMORPHIC = THE MAPPING PRESERVES NOT OiLY
THE DESCENDENCE RELATION, BUT ALSO THE SEQUENCE WITH
WHICH THE STRUCTURE DESCENDS FROM A GIVEN NODE
(NOTE»s THERE MAY EXIST SEVERAL ISOMORPHIC MAPPINGSe THE ROUTINL
DOES NOT EXHIBIT THE ONE ACTUALLY FOUND)

LOGICAL FLAG

I=1

J=15W

CALL TRACE (AsBslsJsFLAG)
IF(FLAG)Y GO TO 100
TISOM=1.0

RETURN

TISOM=0,60

RE TURN

END

Brief Description of TRACE Subroutine

In order to determine whether an isomorphism exists between
two different trees every possible pair of corresponding nodes
in the two trees must be checked to see if they preserve the
isomorphism property. A preliminary screen which considers a
pair of nodes as a possible pair only if they have the same num-
ber of antecedants reduces the problem to that of checking a
large number of possible pairings instead of an astronomical num-
ber.

TRACE begins by pairing the root nodes, then enumerating all
possible pairings of their antecedents. The routine then con-
siders each of these pairs in turn as the roots of their respective
subtrees and enumerates all possible pairs of their antecedents.
This procedure continues until either

1. the possible pairs are all twigs in which case, an iso-
morphic mapping between nodes along this branch of the
trees has been verified. (Remaining branches must be
similarily verified.)

or

2. no possible pairing exists in which case another pos-
sible pairing at a higher level must be tried. (All
possible pairs must be similarily rejected to establish
that no isomorphism exists.)

In order that TRACE can keep track of its position in the
two tree structures, as well as the possible pairs that remain
to be checked, a system of cascading lists has been used.

Data structure of cascading lists
used by TRACE

There are two different types of lists, called X and Y lists
which are linked together to form the cascading lists.

Assume that TRACE has tentatively paired two nodes € and
a' in trees A and A' respectively. Then on the basis of per-
mutations of the two sets of antecedents a. o_ ... &_ and

2 " n__._.
Gi, aé ... a; it enumerates several sets o% possible pairing of

these antecedents. For each possible pairing it must specify
that node ., is paired with node aé, node G with), etc.

The contents of a Y-list is just such a specification of a single
possible pairing. The X-list contains pointers to each of these
Y-lists. Thus the X-list enumerates all possible pairings of
the antecedent nodes, given the assumption that nodes & and o'
are paired. Now & and @' must have been paired in some higher
level Y-list hence we let the X-list point back to this Y-list,
and similarly we let the set of Y-lists point back to the X-list
which enumerates them. In this manner can both ascend and de-
scend the tree structures while checking them for isomorphism.

This linked chain of lists cascades in the sense that as
TRACE descends the structure it creates X and Y lists, and as
it ascends it erases them. At any given time TRACE must be
using the bottom cell of a specified X or Y-list. This con-
vention defines a number of implicit linkages.

GROSS FLOW CHART OF TRACE

-

y
Take bottom pair (300)
of current Y-list

Y

Find antecedents (302)
of this pair

1

No<j/X}e the nodes in\ Yes

(400) y \this pair, twigs?/ ¥y (350)
Make possible Pop bottom

pairing (Y) lists of current
on basis of the Y-list

number of antecedents (351)
i 5

(3032) I (E' Yolist . E)-EEL_

(:Ean we make a __No - S Y-i1st empty: .

- ist? L]
non-empty llsE// (500) [Back up o l'Yes

—LYes (414) X-list and CIS 2nd cell Yes
~-1i =07
Make new pop bottom. of Y-list =0 >]

——— =14
X and Y-lists Erase ¥Y-list No
(352)

Back up to

X-1list,
Got { o 501 Erase Y-list,.
eY i'nt () Back up to
—+1s new Y-list

and pop bottom,

Back up to

Erase X-list.

Y-list

Erase X-list -‘—___]

Is 2nd cell
of ¥-list =02/ No

Yes
(601) (600)

Trees are not _ _ _ -
equal or isomor.

|
Trees are equal

or isomorphic

Schematic structure of X and Y-Lists at one point in
the comparison of trees a and a'

0 0 X=List

1
_] — — - denotes implicit
) pointer
0 denotes backwards

lq. Y-Lists pointer

5 1 denotes forwards
ENE——. .
T 5 = pointer
1 c b'
.
b b’ X-List
1 c c'}F—C¢ uﬁ

Y~List
TRACE has tentatively paired the nodes 1 -
(a,a"), (c.c'), (£,£'), and (g.9'). T——=5

It must descend the structure still
further to verify that the pairings (f,f')
and (g,g') are acceptable in that they are/or lead to twigs.
It must then backup and try to verify the branch defined by
(b,b') in the second Y-list. When this fails, it will back up
to the first x-list, find the next Y-list (containing (b,c')
and (c,b')) and try these pairs.

$IBFTC TRACEX

N NN

NN

200

NN ON

300

301
302

NN

aNONN

303

N NN

3031
3032

304

NN N

40n

SUBROUTINE TRACE (AsBsSWrSW2sFLAG)

THIS SUBROUTINE TRACES THE TREES A AND B TO SEE IF THEY ARE
EQUAL (SW = 0) OR ISOMORPHIC (SW = 1)s IF THEY ARE EQUAL OR
ISOMORPHIC FLAG IS SET TO TRUEs IF NOT FALSE

INTEGER XoYsCELLSLIST1(2092)sL15T2(20+2)9KOPY(20)sFIRSTsP(10)>
INDEX(20) yDUMPL (20)
LOGICAL FLAGsLFLAG

CREATE LISTS X AND Ys BEGIN PAIRING WITH ROOT NODES

Y=LIST(9)

ICELL=NXTLFT (0»sY)

CALL SETDIR (1sAsBsTEMP)
ICELL=NXTLFT (TEMPsY)

GO 70O 300

FIND DESCENDENTS OF CURRENT POSSIBLE PAIRS
GET BOTTOM CELL OF CURRENT Y LIST

CELL=LNKL(CONT(Y))
IPAIR=LNKL(CONT(CELL+1))

CALL SETDIR (OsIPAIRSIPAIRSIPAIR)
JPATIR=LNKR{CONT(CELL+1))

CALL SETDIR (OsJPAIRIJIPAIRIJIPAIR)
IF(SW)3C2+3015302

IF(IDATA(JPAIR) «NESIDATA(IPAIR)) GO TO 500
CALL DEPTH(IPAIR»1eN1sLIST1(1s1}))

CALL DEPTH(JPAIR91eN2sLIST2(1s1))

ARE THEY BOTH TWIGS
IF(N1eEQeQO) GO TO 350

CAN WE MAKE A POSSIBLE PAIRING OF THESE TWO LIST OF NODES
BASED ON THEIR DESCENDENTS

DO 303 K=1sN1
CALL DEPTH(LIST1(Ks1l)slsLIST1(Ks2)sDUMPL)
CALL DEPTH(LIST2(Ksl)s1lsLIST2(Ks2)9sDUMPL)
CONTINUE

¢

ORDER BOTHsLISTS ON DESCENDING NUMBER OF DESCENDENTS

IF(SW2130329303193032

CALL ORDER (LIST1sN1)

CALL ORDER (LIST2sN1)

DO 304 L=1sN1

IF(LIST1(Le2)eNEeLIST2(Ls2)) GO TO 500

CONTINUE

GO TO 400

YESs MAKE LISTS OF ALL POSSIBLE PAIRINGS OF THE CECENDENTS CF
THESE TWO NODESs

MAKE A NEW X LIST AND MAKE IT POINT BACKX TO CURRENT Y LIST
X=LI1ST(9)

CALL SETDIR (OsYsYsTEMP)

I TEMP=NXTLFT (TEMPsX)

PARTITION THE LIST OF DESCENDENT NODES INTO SETS WHICH THEMSELVES
HAVE EQUAL NUMBERS OF DESCENDENTS

N"NN S -

KPART=0
IF(SW2)406440019406

4001 IF(N2+EQel) GO TO 4021
DO 402 L=2sN2
IF(LIST2(L92)eEQeLIST2(L~192)) GO TO 402
KPART=KPART+1
P(KPART)=L=1

402 CONTINUE

4021 KPART=KPART+1
P{KPART)=N2

WE MUST TRY ALL POSSIBLE PAIRINGS BASED ON PERMUTATIONS WITHIN
THESE SETSe

a¥aNaXa!

406 DO 407 L=1sN2
KOPY(L)=LIST2(Ls1)
407 CONTINUE
IF(SW2)414494071s414
4071 L=1
MAXL=1
FLAG=4TRUE,
IF(P(1)eGTel) GO TO 408
IF(KPART.EQel) GO TO 4073
DO 4072 LK=29KPART
IF((P(LK)=P(LK=1))eGTel) GO TO 408
4072 CONTINUE
4073 LFLAG=+FALSEe
GO TO 409
408 LFLAG=4TRUE.

PERMUTE THE INDICES OF PARTITION SET L

[aNaNa!

409 IF(LsEQel) GO TO 411
410 N=P(L)=P(L=1)
FIRST=P(L=1)+1
GO TO 4111
411 N=P(1)
FIRST=1
4111 IF(NeGTel) GO TO 412
IF(LFLAG) GO TO 417
LFLAG=+TRUE »
412 CALL PERM (NsINDEX(FIRST)sFLAG)

PERMUTE THE NAMES INTHE COPY LIST AS INDICATED

DO N

LAST=FIRST4N-1

DO 413 K=FIRSTHSLAST

KC=INDEX(K)+FIRST=1

KOPY(K)=LIST2(KCs1)
413 CONTINUE

MAKE A Y=-LIST (POSSIBLE PAIRING) FROM THE COPY LISTe INSERT A
POINTER TO IT IN LIST Xs AND HAVE IT POINT BACK TO THE X LISTe

NN

414 Y=LIST(9)

a¥aNA!

AN O NN

aNaNe]

a2 ¥a¥a¥a!

415

4151

416

417

418

350

351

352

500

5001

CALL SETDIR (OsXsXs TEMP)

ICELL=NXTLFT (TEMPsY)

DO 415 K=1sN2

CALL SETDIR (1sLIST1(Ksl)9sKOPY(K)s»TEMP)
ICELL=NXTLFT (TEMPsY)

CONTINUE

CALL SETDIR (1lsYsYsTEMP)

ICELL=NXTLFT (TEMPsX)

ARE THERE MORE PERMUTATIONS TO BE FOUND

IF({SW2)300441519300
IF(FLAG) GO TO 417
IF(LsEQel) GO TO 411
L=L~-1

FLAG=eTRUE 4

GO TO 409
IF{LsEQeKPART) GO TO 300
L=L+1

IF(LeGTeMAXL) GO TO 418
FLAG=eFALSE

GO TO 410

MAXL=L

GO TO 410

WE HAVE REACHED A PAIR OF TWIGS SUCCESSFULLYe DELETE THE BOTTOM
CELL OF THIS Y-LIST AND KEEP TRYINGe IF THIS Y=-LIST IS EMPTY
BACK UP ONE LEVEL AND CONTINUE

NBCELL=LNKL(CONT(CELL))
TRASH=DELETE (CELL)

CNBC= CONT(NBCELL+1)
IF(ID(CNBC)sEQel) GO TO 300
IF(CNBC)35296004352

ERASE THE X=LISTs ITS Y=-LISTs AND BACK UP TO NEXT Y=-LIST

X=LNKR (CNBC)

CALL SETDIR (CsXsXeX)

CALL IRALST(Y)
Y=LNKR(CONT(LNKR{CONT(X))+1))
CALL SETDIR (OsYsYsY)

CALL IRALST(X)

TRASH=DELETE (LNKL(CONT(Y)))
CNBC=CONT(LNKL(CONT(Y))+1)
GO TO 351

WE ARE UNABLE TO FIND A MATCH. BACK UPTO THE X=LIST AND
TRY THE NEXT POSSIBLE PAIRINGe DELETE THIS Y-LIST

X={ NKRICONT(LNKR(CONT(Y))41))
IF({X)500196071+5001

CALL SETDIR (OsXeXeX)

CALL IRALST(Y)

TRASH=DELETE (LNKL{CONT({X)))
NBC=LNKL(CONT (X))
CNBC=CONT(NBC+1)
IF(IDICNBC)eEQel) GO TO 501

THIS X-LIST IS EMPTYs BACK UP FURTHER

[a Ve N N

Y= NKR(CNBC)

CALL SETDIR (OsYsYsY)
CALL IRALST (X)

GO TO 500

BEGIN WORK ON A NEW Y-LIST

e NaNS)

501 Y=LNKR(CNBC)
CALL SETDIR (OsYsYsY)
GO TO 300

ALL DONEs SUCCESSFUL

aNAXS)

600 FLAG=eTRUES
CALL IRALST (Y)
RETURN

FATLED

NN

601 FLAG=«FALSEs
CALL TIRALST (Y)
RETURN
END

$IRFTC ORDERX
SUBROUTINE ORDER (ARRAYsN)

C THIS SUBROUTINE ORDERS AN ARRAY(20s2) OF WHICH THE FIRST N

C ROWS ARE NON—-EMPTYs IN DESCENDING ORDER OF THE SECOND COLUMN
INTEGER ARRAY(20Q0s2)sTEMP
NM1=N-1

DO 102 1=1yNM1
IF(ARRAY(192)eGEe«ARRAY(I+1s2)) GO TO 102
DO 101 J=1,l
K=I+1-J
L=1+42-J
DO 100 Jl=1s2
TEMP=ARRAY(KsJ1)
ARRAY (K9J1)=ARRAY (L sJ1)
ARRAY (LsyJ1Y=TEMP
100 CONTINUE
IF (JsEQeI) GO TO 102
IF(ARRAY(Ks2)eLEsARRAY(K—~1s2)) GO TO 102
101 CONTINUFE
10?2 CONTINUE
RETURN
END

SIBFTC PERMX

DO OO N

aNa NS

101

102

103

104

105

106

107
108
109

110

112

111

SUBROUTINE PERM (NsINTsFLAG)

THIS SUBROUTINE IS BASED ON ALGORITHM 102 (ACMe JUNE 1962)e IT
PERMUTES THE INTEGERS 1 THRU Ne FOR THE FIRST CALLs FLAG MUST

BE SET TRUEs PERM THEN SIMPLY RETURNS THE N INTEGERS IN ASCENDING
ORDER IN THE ARRAY INTe SUCCESSIVE CALLS WILL RETURN INT WITH

A NEW PERMUTATION (IN LEXICOGRAPHIC ORDER}e FLAG IS RESET TO

TRUE WHEN ALL PERMUTATIONS HAVE BEEN OBTAINED.

JOHN PFALTZs 1 JULY 1965

INTEGER INT(N)»Q(20)
LOGICAL FLAGsFLAG2

IF(FLAG) GO TO 113
IF(FLAG2) GO TO 110
FLAG2=eTRUE

NM1=N-1

DO 101 J=2sNM1

I=N-J
IFCINT(I)eLT«INT(I+1)) GO TO 102
CONTINUE

FLAG=4TRUE,

RETURN

DO 103 K=1sN

Q(K)=0

CONTINUE

DO 104 K=1sN

J=INT (K)

QeIy=J

CONTINUE
INTP1I=INT(I)+1

DO 105 K=INTP1sN
IF(Q(K)eNEsO) GO TO 106
CONTINUE

INT(I)=K

Q(KY=0

DO 108 K=1sN
IF(Q(K)eEQeD) GO TO 107
I=T+1

INT(I)=Q(K)

GO TO 108

IF(leGEseN) GO TO 109
CONTINUE

RETURN

ALTFRNATE BYPASS

ITEMP=INTI(N)
INT(N)=INT(N=1)
INTIN=1)=ITEMP
IF(INT(N)«GTel) GO TO 111
NM1=N=-1

DO 112 I=1sNM1
IFCINT(TI)eL TeINT(I+1)) GO TO 111
CONTINUE

FLAG=eTRUE.

RETURN

FLAG2=eFALSF,

RETURN

113

114

115

INITIALIZATION

DO 114 1I=1sN
INT(IY=1

CONTINUE

IF(NeEQel) GO TO 115
FLAG2=eTRUE
FLAG=eFALSE

RETURN

END

A A

LISTING OF SLIP ROUTINES USED
IN TREETRAN

Primative functions locally coded in MAP for IBM 7090/94

a. ID

b. LNKL
c. LNKR
d. CONT
e. MADOV
f. SETDIR
g. SETIND
h. STRDIR
i. STRIND

FORTRAN IV SLIP routines substantially as given by Dr.
Weizenbaum in Comm. of ACM, Sept. 1963

$IBMAP IDX 5
ENTRY 1D

U THIS PRIMATIVE FUNCTION = ID(CELL) - PRESENTS AS AN INTEGER THE ID

* PORTION OF CELLe

D CLA =0
LDA* 394 GET CELL
LLS 2 SHIFT ID PORTION IMTO ACC
TRA 1e4
END

$IBMAP LNKLX 5

ENTRY LNKL
* THIS PRIMATIVE FUNCTION - LNKL(CELL) = PRESENTS AS AN INTEGER THE
* MACHINE ADDRESS CONTAINED IN THE LEFT LINK FIELD OF CELL,

LNKL CLA#* 394 GET CELL
ANA MASK MASK QUT ID AND LNKR
ARS 18 SHIFT INTO ADDRESS
TRA Y :

MASK OCT 077777000000
END

$IRMAP LNKRX 3
ENTRY LNKR

* THIS PRIMATIVE FUNCTION = LNKR{CELL) - PRESENTS AS AN INTEGER THLE
* MACHINE ADDRESS CENTAINED IN THE RIGHT LINK FIELD OF CELLe
LNKR CLA*® 394 GET CELL
ANA MA SK MASK OUT ID AND LNKL
TRA 194
MASK ocCT 000000077777
END

$IBMAP CONTX 5
ENTRY CONT
ENTRY INHALT
THESE TWO PRIMATIVE FUNCTIONS - CONT(A)s AND INHALT(A) = DELIVER

X ok Xk

X*

FLOATING POINT EXPRESSIONs INHALT IF USED IN A FIXED PTe EXPRESS.
CONT TRA *41

INHALT CLA%* 394 GET ADDRESS STORED IN A
STA *41
cLa * * GET DATA
TRA 1s4
END

SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP

SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP

SLIP
sLip
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP

SLIP
SLIP
SLIP
SLIP

AS FUNCTIONAL VALUES THE CONTENTS OF THE WORD WHOSE MACHINE ADDRESSSLIP
IS THE INTEGER STORED IN A. USE CONT IF THE CONTEMST IS USED IN A SLIP

SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP

~$1BMAP MADOVX

ENTRY

2
MADOV

% THIS PRIMATIVE FUNCTION -~ MADOVI(A)

* FUNCTIONAL VALUE THE MACHINE ADDRESS OF Ae
GET THE LOCATION OF A

MADOV CLA
TRA
END

FIBRMAP SETDX
FNTRY

THIS PRIMATIVE = SETDIR(IsLsR,CELL)
FIELDs L IN THE LEFT LINK FIELD»
IF ANY OF I,
FIELD IS LEFT UNCHANGED

*
*
* CELL.
*
S

ETDIR CLA#*
TMI
ALS
STP*
CLA*®
TMI
ALS
STD#*
CLA*
TMI
STA*
TRA
END

$IBMAP SETIX
ENTRY

* THIS PRIMATIVE = SETIND(IsLsRsA) = FUNCTIONS EXACTLY AS SETDIR»
AND R IN THE CELL WHOSE ADDRESS IS
INDIRECTLY)

* EXCEPT THAT IT STORES Is Lo

* FOUND IN Ae

SETIND CLA*
STA
STA
STA
CLA*
T™MI
ALS
STP
CLA*
T™MI
ALS
STD
CLA*
TMI
STA
TRA
END

394
144

12
SETDIR

394
*43
33

694
4y4
*43
18

XY
594
*42
694
194

18
SETIND

(IE
694
*4+6
*4+9
*411
394
*43
33
* %
4e by
*43
18
* %
594
*42
* %

le4

GET I

IS IT NEGATIVE
NOs SHIFT
AND STORE

GET L

IS IT NEGATIVE
NOs SHIFT
AND STORE

GET R

IS IT NEGATIVE
NO»s» STORE

- STORES DIRECTLY
AND R IN THE RIGHT LINK FIELD OF
Ly OR (ARE SET TO =1 THEN THE CORRESPONDING

~ PRESENTS AS AN INTEGER

INTO PREFIX

INTO DECREMENT

IN ADDRESS

GET ADDRESS OF CELL

GET 1

IS IT NEGATIVE
NOs SHIFT
AND STORE

GET L

IS IT NEGATIVE
NOs SHIFT
AND STORE

GET R

IS IT NEGATIVE
NO»s STORE

INTO PREFIX

INTO DECREMENT

IN ADDRESS

I IN THE ID

SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP

SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP

SLIP
SLIP
sLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
sL1p
sLip
sL1P
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP -
sLIP

-

$IBMAP STRDX
ENTRY

3
STRDIR

THIS PRIMATIVE FUNCTION - STRDIR(DATUMsCELL) = STORES THE DATUM
DIRECTLY IN CELL.

THE DATUM CAN BE EITHER FIXED OR FLOATING POINT

PRIMATIVE CAN BE NESTED.

*
*
* THE DATUM IS ALSO RETAINED AS THE FUNCTION VALUEs HENCE THIS
*
S

TRDIR CLA* 394
STO* 444
TRA 194
END
$IBMAP STRIX 5
ENTRY STRIND

GET DATUM
STORE IT

* THIS PRIMATIVE FUNCTION =~ STRIND(DATUMsA) = IS THE SAME AS STRDIRY»
* EXCEPT THAT IS STORES THE DATUM IN THE CELL WHOSE MACHINE ADDRESS

* IS CONTAINED IN Ae.

STRIND CLA*
STA
CLA*
STO
TRA
END

4eg
*42
394
* %

1+4

(IEe INDIRECTLY)
GET ADDRESS OF CELL

GET DATUM
STORE IT

SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP

SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP
SLIP

$IRETC ADLERX
FUNCTION ADVLER(LR9A)

ADVLER(LR»sA) = ADVANCE LINEARLY RIGHT TO NEXT ELEMENT

: THIS FUNCTION ADVANCES TO THE RIGHT (DOWN) THROUGH LIST WHICH IS
SPECIFIED BY READER f*LR' UNTIL ELEMENT CELL OR HEADER CELL IS DETECTECL
FLAG -'A' = WILL BE SET TO ZERO IF TERMINATION POINT IS ELEMENT
AND VALUE OF CELLs leEe THE DATUMs WILL BE THE VALUE OF THIS
FUNCTION

FLAG tAt WILL BE SET TO NON~ZERQC IF HEADER CELL CAUSED
TERMINATIONe. VALUE OF FUNCTION WILL BE SET TO ZERO

2 ¥aXaXaXaXaXaXola B

A = ADVLR(LRs0s0)
IF(A)19291
2 ADVLER = REEDILR)
1 RETURN
END

SIBFTC ADLNRX
FUNCTION ADVLNR(LRsA)

NN NN

ADVLNR(LRsA) = ADVANCE LINEARLY RIGHT TO NEXT NAME
THIS FUNCTION ADVANCES TO THE RIGHT (DOWN) THROUGH LIST WHICH 15
SPECIFIED BY READER 'LR' UNTIL NAME CELL OR HEADER CELL IS DETECTEL
FLAG ~t'A' - WILL BE SET TO ZERO IF TERMINATION POINT IS NAME
AND VALUE OF CELLs IeEs THE DATUM, WILL BE THE VALUE OF THIS
FUNCTTION,
FLAG tAt' WILL BE SET TO NON-~ZERO IF HEADER CELL CAUSED
TERMINATIONe. VALUE OF FUNCTION WILL BE SET TO ZERO
A = ADVLR(LRs1s1)
IF{A)1s2s1
2 ADVLNR = REED(LR)
1 RETURN
END

SIBFTC ADLWRX
FUNCTION ADVLWR(LRsA)

a¥aNaXaNaNaYakaXa)

ADVLWR(LRsA) = ADVANCE LINEARLY RIGHT TO NEXT WORD
THIS FUNCTION ADVANCES TO THE RIGHT (DOWN) THROUGH LIST WHICH IS
SPECIFIED BY READER 'LR' UNTIL WORD CELL OR HEADER CELL IS DETECTLL
FLAG —'A' - WILL BE SET TO ZERO IF TERMINATION POINT IS WORD
AND VALUE OF CELLs IsEe THE DATUMy WILL BE THE VALUE OF THIS
FUNCTION
FLAG ftA' WILL BE SET TO NON-ZERO IF HEADER CELL CAUSED
TERMINATIONs VALUE OF FUNCTION WILL BE SET TO ZERO
A = ADVLRI(LRs1+0)
IF(A)19251
2 ADVLWR = REED(LR)
1 RETURN

END

N "

AN ONDOOONOND

$IBFTC ADVLRX

£ W -

o N

FUNCTION ADVLR(LRsJsK)

THIS FUNCTION = ADVLR(LsJseK) = IS THE BOOKKEEPING GUTS OF ALL THE
LINEAR LEFT ADVANCESe L IS THE ALIAS OF THE READER FOR THE LIST
BEING SEARCHEDS J AND K INDICATE THE TYPE OF ADVANCE»s NAME,
ELEMENTs OR WORDe SINCE A LINEAR ADVANCE NEVER DESCENDS
SUBLISTSs THE READER IS NEVER EXTENDEDs MERELY ITS POINTER
CHANGEDe IF A CELL WITH THE DESIRED CHARACTERISTICS IS FOUND>
THE FUNCTIONAL VALUE IS ZEROs IF NOTs» MINUS ONE.

CLR = CONT(LR)
LK = LNKR({CONT(LNKL{(CLR}})
CAND = CONTI(LK)
CALL SETDIR(=-1sLKs=1,sCLR)
IF (ID(CAND)=2)192s1
IF (ID(CAND)I=J)344+3
IF (ID(CAND)=K)584+5

ADVLR = 0O,

GOTO 6

ADVLR = =1,0

CALL STRIND(CLRsLR)
RETURN

END

$TRFTC ADSERX

AN ONNONNOONON NN

2
1

FUNCTION ADVSER{LR»A)}

ADVSER(LRsA) = ADVANCE STRUCTUALLY ELEMENT RIGHT

THIS FUNCTION ADVANCES TO THE NEXT TO THE RIGHT (DOWN) CELL WHICH

FLEMENT CELL,

IF THIS CELL IS A ELEMENT THE FLAG IS SET TO ZERO AND THE DATUM
OF THIS CELL IS DELIVERED AS ITS FUNCTIONAL VALUES.

IF THIS CELL IS A HEADER CELL THE FLAG 1S SET TO MINUS ONEe
THIS INDICATES AN END OF A LIST(ANY LEVEL LIST).

IS A

THIS ADVANCE FOLLOWS THROUGH ALL LEVELS OF SUBLISTS FOR LIST INDICATED.

A = ADVSR(LRs0,0)

IF(AY1s9291
ADVSER = REED(LR)
RETURN

END

$IBFTC ADSNRX
* FUNCTION ADVSNR(LRsA)

ADVSNR(LRsA) = ADVANCE STRUCTUALLY NAME RIGHT
THIS FUNCTION ADVANCES TO THE NEXT TO THE RIGHT (DOWN) CELL WHICH IS A |
NAME CELL. i
IF THIS CELL IS A NAME THE FLAG IS SET TO ZERO AND THE DATUM i

OF THIS CELL IS DELIVERED AS ITS FUNCTIONAL VALUE.
IF THIS CELL IS A HEADER CELL THE FLAG IS SET TO MINUS ONE.

THIS INDICATES AN END OF A LIST(ANY LEVEL LIST).
THIS ADVANCE FOLLOWS THROUGH ALL LEVELS OF SUBLISTS FOR LIST INDICATED.

NOoONOHNAN NN H

A = ADVSR(LRs151)
IF{AY19251
? ADVSNR = REED(LR)
1 RETURN
END

$IBFTC ADSWRX
FUNCTION ADVSWR(LRsA)

C THIS FUNCTION - ADVSWR({LRsA) = ADVANCES ONE CELL TO THE RIGHT
C (DOWN) IN THE LIST WHOSE READER HAS ALIAS LRe IF THE ADVANCE IS
C POSSIBLEs FLAG A IS SET TO ZERO AND THE DATUM OF THAT CELL IS
C DELIVERED AS FUNCTIONAL VALUEe IF NOT (IEe WE ARE AT THE BOTTOM
C OF THE STRUCTURE)s FLAG A IS SET TO MINUS ONE9
C
A = ADVSR(LRs1+0)
IF(AY1s291
2 ADVSWR = REED(LR)
1 RETURN
END

SIRFTC ADVSRX

FUNCTION ADVSR(LsJ9sK)

THIS SUBROUTINE = ADVSR(LsJsK) - IS THE BOOKKEEPING GUTS OF ALL
THE STRUCTURAL RIGHT ADVANCESe L IS THE ALIAS OF THE READER FOR
THE LISTe. J AND K INDICATE WHETHER WE ARE INVOLVED IN A NAMEs
ELEMENT» OR WORD ADVANCEe IT EXTENDS THE READER CHAIN AS
NECESSARY IN SEARCHING FOR THE DESIRED CELLe IF A CELL WITH THE
DESIRED CHARACTERISTICS IS FOUNDs THE FUNCTIONAL VALUE IS ZERO.
IF NOTs MINUS ONEe (NOTEse ADVSR WILL SEARCH THE ENTIRE LIST
STRUCTURE TO THE RIGHT OF THE STARTING POINT TO FIND AM ACCEPTALLL
CELLs)

aNaNaYaYaNaNaNANANS!

= CONTI(L)
= LNKL(R)
AND = CONT(LNKL(R))
IF (ID(CAND)=1)196s1
1 Lcep LNKR(CAND)
CALL SETDIR(=1sLCPs=14R)
CAND = CONT(LCP)
[F (ID(CAND)=2)394+3
3 IFUIDICAND)I=J) 7987
7 - IF(ID(CAND)=K)598s5

R
LCP
C

H

ST -

IFCID(CAND)I=1)196>1
M=NUCELL(Z)
CALL STRIND(R M}
CALL STRIND(CONT(L+1) sM+1)
CALL SETIND(=1s INHALT(LCP+1) sLCNTR(L)+1sL+1)
CALL SETDIR(=1s~1sMeR}
CAND = CONT(INHALT(LNKL(R)+1})

GOTO 1

IF (LCNTR(L))991049
ADVSR = =1,0

GOTO 12

LK = LNKR(R)
R = CONTI(LK)

CALL STRIND(CONT(LK4+1})sL+1)
CAND = CONT(LNKL(R)})

CALL RCELL(LK)

GOTO 1

ADVSR = 040
CALL STRIND(RsL)
RETURN

END

SIRFTC DELETX

NN NONN

2

901

1

FUNCTION DELETE(K)

DELETE THE CELL WHOSE ADDRESS IS FOUND IN =K=s
IF THE CELL IS A HEADERe A DIAGNOSTIC IS PRINTEDsPROGRAM CONTINUEL

AND VALUE OF FUNCTION IS SET TO ZEROs

THE VALUE OF THE FUNCTION IS THE CONTENTS OF THE DELETLD CELLe

IF(ID(CONT(K)I=2)192s1
WRITE (6+901)

DELETE = 0,
RETURN

FORMAT (1H4s97HAN ATTEMPT HAS BEEN MADE TO DELETE A HEADER - ZERO
1 HAS BEEN DELIVERED AND THE PROGRAM CONTINUED/1Xs31HSLIP MESSACE

I- ROUTINE DELETE)
DELETE = CONT(K+1)

LL = LNKL(CONT(K})

LR = LNKR(CONT(K))
CALL RCELL(K)
CALL SETIND(=1s-=1sLRsLL)
CALL SETIND(=1sLLe=14sLR)
RETURN
END

$IBFTC INITX

Annn

[aXa!

SUBROUTINE INITAS({MsN)

THIS SUBROUTINE INITIALIZES THE STRUCTURE OF THE DIMENSIONED
ARRAY SPACE INTO A LIST OF AVAILABE SPACE (LAVS).

COMMON /SLIPC/AVSL
DIMENSION M(N)

THIS PART SETS UP THE LIST OF AVAILABLE SPACE (LAVS)

DO 2 I=1>sN
MII) =0
K = N=2
DO 3 T=1sKs2
CALL SETDIR(-1s-19sMADOVIM(I+2))sM(I))
CALL SETDIR{OsMADOV(M(N=1}))sMADOV(M{]1))sAVSL)
RETURN
END

$IRFTC IRALX

O OO O NN

=N

FUNCTION IRALST{(P)

THIS FUNCTION RETURNS A NAMED LIST TO LAVS UNLESS ITS CELLS ARE
A SUBLIST OF ANOTHER LIST.

THIS VERSION OF IRALST IS NON-STANDARD IN THAT IT DOES NOT CHECK
TO SEE IF THE HEADER REFERS TO A DESCRIPTION LIST.

L=LOCT(P) SLIP
CALL SETIND(=19=19sLCNTR(L)=1sL+1)
IRALST = LCNTRI(L)
IF(IRALST)24291
CALL MTLIST(P)

CALL RCELL(L)
RETURN
END

$IBFTC LCNTRX

[alaNaNe)

FUNCTION LCNTR(K)

THIS FUNCTION = LCNTR(R) = GIVES AS FUNCTIONAL VALUE THE LEVEL
COUNTER OF READER R

LCNTR = LNKR(CONT(K+1))
RETURN
END

$IBFTC LISTX
\ FUNCTION LIST(K)

.C
C THIS FUNCTION CREATES A NAMED LIST (EMPTY) WHICH CANNOT BE
C UNINTENTIONALLY ERASED.
C
C
LIST = NUCELL(2Z)
CALL SETDIR(OsLISTHsLISTSLIST)
CALL SETIND(2sLISTsLISTsLIST)
IF (K=9)2s1,52
2 CALL SETIND(=1s=141sLIST+1)
K = LIST
1 RETURN
END
$IRFTC LSTMTX SLIP
FUNCTION LISTMT(P)
C
C THIS TEST FUNCTION =~ LISTMT(P) - CHECKS TO SEE IF THE LIST NAMED SLIP
C BY P IS AN EMPTY LIST. IF SOy THE FUNCTION VALUE IS ZERO, SLIP
C OTHERWISE IT IS MINUE ONE. SLIP
C SLIP
L = LOCT(P)
IFCINHALT(L)=INHALT(LNKR(CONT(L)))) 39493 sLIP
‘ 4 LISTMT = O
’ RETURN
3 LISTMT = =1
RETURN
END
$IBFTC LOCTX SLIP
FUNCTION LOCTI(K)
C
C THIS TEXT FUNCTION - LOCT(K) = IS USED TO VERIFY THAT THE CONTENTSSLIP
C OF CELL K NAMES A LIST s WHERE IT IS REQUIRED BY THE CALLING SLIP
C ROUTINE. 1IF K DOES NOT NAME A LIST AN ERROR MESSAGE IS PRINTED SLIP
C AND EXECUTION STOPPED) IF IT IS OeKe THE FUNCTION VALUE IS SLIP
C MERELY THE ARGUMENT, SLIP
C SLIP

IFINAMTST(K) 19291
2 LOCT = K
RETURN
1 PRINT 901
WRITE (6+901)
CALL FXEM(500)
STOP
901 FORMAT(1H44113HA LIST WAS REQUIRED AS AN OPERAND BUT WAS NOT FOUND
1 THE PROGRAM WAS REGRETFULLY TERMINATED BY SLIP ROUTINE LOCTe //)
END

T

$IRFTC LOFRDX
\ * 'FUNCTION LOFRDR(K)

THIS FUNCTION - LOFRDR(R) = GIVES AS FUNCTIONAL VALUE THE MACHINE
ADDRESS OF THE HEADER OF THE LIST FOR WHICH THIS IS A READER.
(1T ALSO APPEARS TO MAKE THE LIST AN EMPTY LISTs)

AN NAN

L = LNKL(CONT(K+1})
CALL SETDIR(OsLsLsL)
LOFRDR = L

RETURN
END

SIRFTC LPNTRX
FUNCTION LPNTRI(K)

C
C THIS FUNCTION - LPNTR(R) = GIVES AS FUNCTIONAL VALUE THE MACHINE
C ADDRESS OF THE CELL THE READER R IS CURRENTLY POINTING AT.
C
LPNTR = LNKL(CONT(K))
RETURN
END

$IBFTC LRDOVX
FUNCTION LRDROVI(P)

C
C THIS FUNCTION - LRDROV(P) = ASSIGNS A READER FOR THE LIST WITH
C ALIAS Ps (IEe A CELL IS TAKEN FROM LAVSs PUT IN THE FORM OF A
C READERs AND MADE TO POINT AT THE HEADER OF Ps) 2TS FUNCTIONAL
C VALUE IS THE MACHINE ADDRESS OF THIS CELLe
C
LRDROV = NUCELL(Z)
CALL SETIND(3sLOCT(P)s09sLRDROV) SLIP
CALL SETIND(OsP»0OsLRDROV+1)
RETURN

END

— -

$IRFTC LVLR1X

FUNCTION LVLRV1(K)

" .C

C THIS FUNCTION CAUSES THE READER TO ASCEND ONE LEVEL IN ITS STACK
C
LVLRV1 = K
IF (CONT(LVLRV1+41))29392
3 RETURN
? L = LNKR{CONT(LVLRV1})
CALL STRIND(CONT(L)sLVLRV1)
CALL STRIND(CONT (L+1)sLVLRV1+1)
CALL RCELL (L)
RETURN
END

$IRFTC MTLISX
FUNCTION MTLIST(P)

THIS FUNCTION RETURNS A LIST TO LAVS, THE BOTTOM CELL OF LAVS
IS MADE TO POINT TO THE TOP OF THE LISTs AND THE BOTTOM OF THE
LIST BECOMES THE BOTTOM OF LAVS,
COMMON /SLIPC/AVSL
M=LOCT(P)
IF (LISTMT(P))34443
3 LR LNKR(CONT(M))
LL LNKL(CONT(M))
CALL SETIND(=1sMsMyM)
CALL SETIND(=-1ls=1sLReLNKL(AVSL))
CALL SETDIR(=1sLLs=1sAVSL}
CALL SETIND(=ls=1s0sLNKL(AVSL))
4 MTLIST = M
RETURN
END

NnNOnOn

]

$IBFTC NAMETX
FUNCTION NAMTST(K)

THIS TEST FUNCTION = NAMTST(K) - CHECKS THE CONTENTS OF CELL Ko

WISE IT IS MINUS ONE.

NN O NN

IF (LNKL(K)=LNKR(K))1s4s1l
4 IF (ID(CONTI(K))=2)19251

2 IF(CONT(LNKR(CONT(LNKL(CONT(K)}))})=CONT(K))193»s1l
3 NAMTST = O

RETURN
1 NAMTST = =]

RETURN

END

IF IT 1S THE NAME OF A LISTs THE FUNCTION VALUE IS ZERO» OTHER-

SLIP

SLIP

SLIP
SLIP
SLIP
SLIP
SLIP

$IBFTC

aAnAanh

AONON

w

501

NUCELX
FUNCTION NUCELL(X)

THIS FUNCTION GETS A NEW CELL FROM LAVSe IT CHECKS THE ID OF
THE CELL BEFORE DELIVERYs IF IT IS 1 (CELL REFERS TO A SUBLIST)
THE READER OF THAT SUBLIST IS DECREMENTED BY 1.

COMMON /SLIPC/AVSL
M = LNKR(AVSL)

IF (MY1s2H1
PRINT 901
WRITE (6+901)
STop
IF (ID(CONT(M))=1)39443

THIS CELL IS A NAME CELLs LOWER REFERENCE COUNTER OF LIST NAMED
AND ERASE IF POSSIBLE.

CALL IRALST (CONT(M+1))

CALL SETDIR (=19=1sLNKR(CONT(M)}»AVSL)

CALL STRIND (0sM)

CALL STRIND (GCsM+1)

NUCELL=M

RETURN

FORMAT (1H1s6X981HLIST OF AVAILABLE SPACE EXHAUSTED - PROGRAM TERM

1INATED BY SLIP ROUTINE NUCELL ///7)

END

SIBFTC NXTLFX

N ONOND

FUNCTION NXTLFT(MsA)

THIS FUNCTION ~NXTLFT(MsA) - STORES THE DATUM M IN THE CELL TO
THE LEFT (ABOVE) OF THE CELL SPECIFIED BY THE LEFT LINK OF A.
THIS NEW CELL IS TAKEN FROM LAVSs AND ITS MACHINE ADDRESS IS THE
FUNCTION VALUE.

IL = NUCELL(Z)
NXTLFT = IL
LL = LNKL(CONT(A))
CALL SETIND(=1s=1sILsLL)

CALL SETIND(=1sILs=1yA)
CALL SETIND(OsLL9sAsIL)

IF (INAMTST(M)) 19291
CALL SETIND(1ls=1s=15IL)
CALL SETIND(=13=13LCNTR(M}+1sM+1)
CALL STRIND(MsIL+1)

RETURN
END

T'vvﬁ'—(“"vg‘A‘

$TBFTC NXTRTX

FUNCTION NXTRGT(MsA)

THIS FUNCTION - NXTRGT(MsA) — STORES THE DATUM M IN THE CELL TO
THE RIGHT (BELOW) THE CELL SPECIFIED BY THE RIGHT LINK OF Ae THIS
NEW CELL IS TAKEN FROM LAVSs AND ITS MACHINE ADDRESS IS THE
FUNCTION VALUE,.

NONO NN

IR = NUCELL(Z)
NXTRGT = IR
LR = LNKR(CONT(A))
CALL SETIND(=1sIRs=1sLR)
CALL SETIND(~=1s=1sIRsA)
CALL SETIND (OsAsLRsIR)
IF (NAMTST(M))1s2s1
2 CALL SETIND(ls-19-1»IR)
CALL SETIND(=1s=1sLCNTR(M)+19sM+1)
1 CALL STRIND(MsIR+1)
RETURN
END

$IBFTC RCELLX
SUBROUTINE RCELL(CELL)

C
C THIS SUBROUTINE RETURNS A CELL TO LAVSe.
C

COMMON /SLIPC/AVSL

CALL SETIND(=1s=1sCELLsLNKL(AVSL))
CALL SETDIR(=1sCELL9=19AVSL)

CALL SETIND(=1s=1+s0sCELL)

RETURN

END

$IBFTC REEDX
FUNCTION REED(K)

THIS FUNCTION = REED(K) - HAS AS ARGUMENT Ky THE ALIAS OF A READER
IT LOOKS AS THE CELL TO WHICH THE READER IS POINTING AND DELIVERS
ITS DATUM AS FUNCTIONAL VALUE.

NONNND

REED = CONT(LNKL(CONT(K))+1)
RETURN
END

References

Avondo-Bodino, G. Economic Applications of the Theory of
Graphs, 1962, Gordon and Breach, New York

Berge, C. The Theory of Graphs and its Applications, 1962,
John Wiley & Sons, London

Weizenbaum, J. "Symetric List Processor" Communications
of the ACM, September 1963

